Fabrication and Evaluation of Novel Biphasic Scaffold for Osteochondral Defect Repair
Received Date: Oct 01, 2022 / Published Date: Oct 31, 2022
Abstract
Every year more than 2.2 million bone graft procedures are performed to treat the bone defects worldwide, which costs approximately $2.5 billion. The osteochondral defects remain a critical problem in the reconstructive cartilage surgery. The prime causes of articular cartilage injuries are age-related degeneration, trauma and other diseases. Still, these defects owing to the dissimilar intrinsic healing abilities of subchondral bones and articulate cartilage tissues. Tissue Engineering has provided the greatest options for the restoration of the injured osteochondral tissues. For this purpose, one intact bio composite scaffold must be fabricated to sustain the reconstruction of both cartilage and subcondral bone. Therefore, a biodegradable biphasic scaffold material with its unique structure was developed for osteochondral bone defect repair. The upper chondral phase was a composite of polycaprolactone (PCL) and gelatin. The lower subchondral phase was a polycaprolactone-poly lactic-co-glycolic acid (PCL-PLGA)-beta tricalcium phosphate composite. Both layers of the scaffold exhibited interconnected porous structures. The structural identification was performed by XRD (X-ray powder diffraction analysis), and SEM (scanning electron microscopy) techniques. The mechanical properties were also performed in order to check the compressive strength and overall porosity of the sample. As the consequence, this biphasic scaffold may be a promising material and open up new horizons in the field of osteochondral tissue engineering.
Citation: Anwar A, Yu X (2022) Fabrication and Evaluation of Novel Biphasic Scaffold for Osteochondral Defect Repair. J Powder Metall Min 6: 329.
Copyright: © 2022 Anwar A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open 91桃色 Journals
Article Usage
- Total views: 901
- [From(publication date): 0-2022 - Apr 22, 2025]
- Breakdown by view type
- HTML page views: 579
- PDF downloads: 322